STATIONARY ISOTHERMIC FLOW OF A NON-NEWTONIAN
LIQUID IN A PARABOLIC CONVERGENT CHANNEL
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An approximate solution of the problem of stationary isothermic flow of a non-Newtonian
liquid in a parabolic convergent channel is given for the condition r « z. Expressions for
the velocity distribution are derived.

The motion of a non-Newtonian liquid in a circular cone whose side surface is formed by rotation of
the parabola r = az? about the z axis is considered. The rheological behavior of the moving system is
described by the equation

11, = 2kh"1Q,, 1)

It is assumed that the motion is stationary and isothermic. The problem is solved for a convergent channel
with infinite length which satisfies the condition

r&z (@ . (2)
This condition is encountered in designing nozzles for atomization, mechanical deposition of coatings, etc.

As it moves in a parabolic convergent channel, the system experiences both linear and angular de-
formations. In this case [1], the shear extends fo the whole region. The flow is convergent, The differen-
tial equation of motion is obtained by solving simultaneously Eq. (1) and the Cauchy equilibrium equation

div I1 = pya. ‘ (3)
Since the flow is axisymmetric,
v, =10,(r, 2 v,=0,(r, 2); vog=0. (4)

A series of isotropic parabolas r = vaz?, where 0 = v = 1, can be drawn inside the convergent channel
{see Fig. 1). In solving the problem, we substitute the new coordinates v and z for r and z and write the
differential equations in terms of the new variables, allowing for the relationships between the new and the
old coordinates.

We introduce the auxiliary functions

(Pl = 2kh"‘"‘1ér",
Py = Qkhn—le’u’ (5)
T = 2k e,

Then, the differential equations of motion are written in the following form:

ap + 6(‘)1 ! aT

az? — 2v
ov Y 0z v v
LTl e B (6)
v dt

Belorussian Polytpchnic Institute, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 20,
No. 2, pp. 205-209, February, 1971.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

141



_Gp_f_ﬁcpz_i_Qv;@p v Jp,

0z 0z 2 ov z v
| o T dv, (7
+ az’ ov t vaz? ~Fo dat

After eliminating p from these equations, we obtain

Po, 2 o 2 On 6 o9 1 g,

oz z o v a2 z oy v %

2 2 2 2
O, v Oy, o o — vz &t
ovoz F4 ov? oz2 dvoz
1 o1 1 dr
4vig — 6va —
+( Ve o’ )6-\72 +( e vazz> dv
T a dv, 0 / dv,
2 Ivaz —— { ’
v2a22+p°[ v ( di )+ Y e\t )
—ap 0 (4 Y], 8)
0z dt
We introduce the stream function which satisfies the continuity equation,
®,
P(v, 2) = E —Z'T (9)

i=D

where wy = wi (). Such a stream function was used in considering the motion of a viscous liquid in a cone
[2] and a viscoplastic medium in a flat parabolic divergent channel [1].

The velocity distribution was determined mainly by the first term of the expansion — the basic func-
tion [1]. The correction introduced by the connecting functions is negligible. In the first approximation,
the streamlines follow the isotropic curves.

Retaining only the first term of the expansion in determining the basic function, we obtain

_ 2o, o (10)

r az? 3 U= vaizt

In order to satisfy the condition at the axis (Vpl, = =03 v,1, = 9= 0), we seek wz) in the form w(') =vf ().
Then,

. f 1)

v, = 7 U= .
az? a*zt
After calculating the derivatives of the functions figuring in the differential equation (8), we reach
the conclusion that, with the assumption (2) for a mildly sloping convergent channel, the terms containing
@4, @9, and their derivatives in the differential equation can be neglected, and the intensity cf the deforma-
tion rates can be determined by means of

h= a];z“ . 12)

If r « z, we obtain the following equation for determining the basic function:

[ o ot
2
a TV o

v

—t =0, (13)

where 7 =Kkh™, since 7 >0 for a convergent flow. By solving this equation, we determine the value of the
function f, ‘

1
F=f 1= ). (14)
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The integration constants are determined from the following equations:
1) the adhesion condition,

Oyt = 0, Ut =0,

whence fl, = = 0;

2) the condition of discharge constancy,

1
2n jm(v)dv =—Q,
b

Fig. 1. Motioninaparabolic , I
3) Uyly=0 =
convergent channel.

» e, fh=o = fo- (1s)

a2t

By substituting the value of f in Eqgs. (11), we obtain the expressions de-
scribing the velocity distribution in the first approximation:

20t

v, =

r ’

(16)

1
— 1
v, = /;"4 (1——'v" ) .
a%

In the fiow of pseudo plastics (n < 1) and, in the limiting case, Newtonian liquids (n = 1), inertial forces do
not affect the value of the basic function. The flow of a Newtonian liquid in a parabolic convergent channel
constitutes a particular case of the problem considered above. We have analyzed this problem for the
condition r << z. The following equation was obtained for determining the basic function in this case:

3’ v3— 2w vk 3wy v — 3ag = 0. (17)

By solving (17) for the boundary conditions, we obtain the expressions

v, = 2vio (I —+?%,
az?
(18)
o, — Lo (1—v¥
gt ’

which in fact can be obtained from (16) for n =1. As was mentioned earlier, expressions (16) and (18)
provide an idea of the velocity profile in the first approximation. By determining the correcting functions,
we can obtain a solution with any degree of accuracy.

In determining the first correcting function, we use the first two terms of the expansion defined by

(9):

Y, 2) =, + L. (19)
2

Then,
2w 4O + Ive;
r az? vazt ’
[0} (L)l[
U = — —_—
I et + vas

20

the firstterms of which have already been found in determining the basic function.
In order to satisfy the condition at the axis (vpl, = ¢ =0, v 1, = ¢ # 0), we seek wy in the following
form:

O, = v (v). (21)
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Then,

1
_2vf, - T 1
U, = __—(1 -V ) + azt

(5‘V(p + 2\72‘})’)’
(22)

_1__;_1 1
0= D (1) 29+ ve)

In determining the correcting function, we must decide which one will bring inertial forces into the equation
for each specific case in dependence on the deviation of n from unity.

Neglecting small quantities and assuming that the deviation from Newtonian behavior is such that
inertial forces do not affect the first correcting function, we obtain a differential equation, the solution of
which provides the value of ¢ in the following form:

1

— 1
_ G 23
v = @ e T )

The function-qa must satisfy the following conditions:
Qlv=1=0; Glv=o = Py
whence
C,=0; C,=0.

Thus, the first correcting function vanishes. The correcting functions are equal to zero whenever
the differential equations used for their determination are homogeneous. The function which is determined
by taking into account inertial forces is the first one that is different from zero. The smaller the value
of n, the larger the index number of the function whose value is affected by inertial forces. For a New-
tonian liquid {n = 1), even the first correcting function must be determined by taking into account inertial
forces. For n> 1 (dilatant liquids), inertial forces can affect the basic function, beginning with certain
values of the index n.

The pressure necessary for the motion of a non-Newtonian liquid in the convergent channel can be
determined by integrating Eqs. (6) and (7).
NOTATION

I, is the stress tensor deviator;
®, is the deviator of the deformation rate tensor;

h is the intensity of deformation rates;

k is the consistency measure;

n is the index of deviation from Newtonian behavior;
po is the density;

T is the shearing stress;

éik are the components of the deformation rate tensor;
is the discharge.
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